State of the Art of Secure Internet of Things (S-IoT): The Development of New Cryptographic Key Updating Schemes to Improve the Security of Long-Range Wide Area Network (LoRaWAN) Protocol

Kalamullah Ramli and Nur Hayati

Co-Founder, Indonesia Cyber Awareness and Resilience (id-CARE) Institute Professor, Electrical Engineering Department Universitas Indonesia

International Conference on ASEAN JAPAN Cybersecurity Community 2023

OUTLINE

- Introduction: IoT Use Case and IoT Security Threats
- LoRaWAN Security
- LoRaWan Security Issues
- Proposed Solutions:
 - Root Key Update Scheme
 - Session Key Update Scheme
- Conclusions

IoT Security Threats

- An IoT attack is a malicious attempt to exploit vulnerabilities in Internetconnected devices such as smart office devices, industrial control system, and critical infrastructure key components
- Attackers may seize control of the device, steal sensitive data, or use the device as a part of a botnet for other malicious purposes
- With limited resources and processing power, IoT devices may lack security features to protect against attacks, making them more vulnerable to attacks than other IT equipment

IoT Security Threat (in numbers)

The number of Internet of Things (IoT) cyber attacks worldwide amounted to over 112 million in 2022. Over the recent years, this figure has increased significantly from around 32 million detected cases in 2018. In the latest measured year, the year-over-year increase in the number of Internet of Things (IoT) malware incidents was 87 percent

Source: Statista, Feb 2023

https://www.statista.com/statistics/1377569/w orldwide-annual-internet-of-things-attacks/

Why LoRaWAN?

 LoRaWAN become the standard of Internet of Things (IoT) Low Power Wide Area Network (LPWAN) through ITU-TY.4480 recommendation (Des, 2021)

O E https://biog.semtech.com/formwan-formally-recognized-as-en-itu-international-standaed

LoRaWAN® Formally Recognized as an ITU International Standard

15 December 2021 / by Olivier Beaujard

8

•

LoRaWAN Formally Recognized as an ITU International Standard

The LoRaWAN® standard has been officially approved as a standard for low power wide area networking (LPWAN) by the International Telecommunication Union (ITU), the United Nations specialized agency for information and communication technologies.

- https://www.itu.int/rec/T-REC-Y.4480/en
- https://lora-alliance.org/lora-alliance-press-release/lorawanformally-recognized-as-itu-international-standard-for-low-powerwide-area-networking/
- <u>https://blog.semtech.com/lorawan-formally-recognized-as-an-itu-international-standard</u>

6

Why LoRaWAN?

- The Number of IoT Connections in 2023 is 1,716.99 Million. LoRa connections reach ± 42.55% of the total or as many as 730.69 million (Source: Statista, July 2023)
- There are 5.9 million LoRa gateways, 300 million end devices/nodes, and 181 public network operators. LoRa technology has been applied to various sectors (Source: Semtech, August 2023)

06/10/2023

Technology & Telecommunications + Telecommunications

Number of LPWAN connections by technology worldwide

5.9 million

gateways with LoRa devices deployed worldwide (March 2023) end nodes with LoRa devices deployed worldwide (March 2023)

300 million

181

public network operators and growing (March 2023) of all non-cellular LPWA connections will feature LoRa by 2026 (ABI Research)

>50%

https://www.statista.com/statistics/880822/lpwan-ic-market-share-by-technology/ https://www.semtech.com/lora

LoRa By the Numbers

50th Year of ASEAN-Japan Friendship and Cooperation

- Mutual authentication is established between a LoRaWAN end-device and the LoRaWAN network as part of the network join procedure through Over-the-Air-Activation (OTAA). The OTAA Join Procedure proves that both the end device and the network have the knowledge of the root key, specifically AppKey.
- Data Integrity and Confidentiality Protection: All LoRaWAN traffic is protected using the two session keys. Each payload is encrypted by AES-CTR and carries a frame counter (to avoid packet replay) and a Message Integrity Code (MIC) computed with AES-CMAC (to avoid packet tampering).

8

LoRaWAN Security

- LoRaWAN security uses the AES cryptographic algorithm for integrity protection and encryption.
- Each LoRaWAN device is personalized with a unique 128 bit AES key (<u>called root key</u>)
 - Root key LoRaWAN consist of NwkKey & AppKey

- LoRaWAN session keys are then derived, one for providing integrity protection and encryption of the LoRaWAN MAC commands and application payload (the NwkSKey), and one for end-to-end encryption of application payload (the AppSKey).
 - The NwkSKey is distributed to the LoRaWAN network in order to prove/verify the packets authenticity & integrity.
 - The AppSKey is distributed to the application server in order to encrypt/decrypt the application payload.

LoRaWAN Security Issues

Root Key

- Root Key is LoRaWAN Master key
- Root Key is the LoRaWAN principal key used to derive all other cryptographic keys
- Root Key issues : The root key value <u>remains the same</u> throughout the device's lifespan, implying that its crypto period exceeds the recommended value

📲 🖌 🔪 S

- Session Key
- Session Key is a derivation key used to secure communication and payload transmission.
- Session Key issue: LoRaWAN apply the <u>same session</u> key to secure <u>multiple communication sessions</u> – Key repetition leads to data leakage when it is compromised.

The Problem of LoRaWAN Cryptographic Keys

Root Key: Static The Value is never change during device's lifespan Session Keys: Dynamic Used to Secure ≥ 1x Communication Session

Endanger LoRaWAN Security Protocol: potential for key compromises.

11

LoRaWAN Security Issues

- Cryptoperiod of <u>Root Key</u> → It must be changed <u>at least once</u> a year (NIST Special Publication 800-57 Part 1 Rev. 5)
- Root Key = LoRaWAN's Master key

NIST SP 800-57

- 9. Symmetric master key/key-derivation key:
 - a. Type Considerations: A symmetric master key (also called a key-derivation key) may be used multiple times to derive other keys using a (one-way) key-derivation function or method (see Section 8.2.4). Therefore, the cryptoperiod consists of only an originator-usage period for this key type. A suitable cryptoperiod depends on the nature and use of the key(s) derived from the master key and on considerations provided earlier in Section 5.3. The cryptoperiod of a key derived from a master key could be relatively short (e.g., a single use, communication session, or transaction). Alternatively, the master key could be used over a longer period of time to derive (or re-derive) multiple keys for the same or different purposes. The cryptoperiod of the derived keys depends on their use (e.g., as a symmetric data-encryption or integrity authentication key).
 - b. Cryptoperiod: An appropriate cryptoperiod for a symmetric master key might be one year, depending on its usage environment, the sensitivity/criticality of the information protected by the derived keys, and the number of keys derived from the master key.

	Cryptoperiod	
Кеу Туре	Originator-Usage Period (OUP)	Recipient-Usage Period
2. Public Signature-Verification Key	Several years (depends on key size)	
3. Symmetric Authentication Key	\leq 2 years	\leq OUP + 3 years
4. Private Authentication Key	1 to 2 years	
5. Public Authentication Key	1 to 2 years	
6. Symmetric Data Encryption Keys	\leq 2 years	\leq OUP + 3 years
7. Symmetric Key-Wrapping Key	\leq 2 years	\leq OUP + 3 years
8. Symmetric RBG Keys	See SP 800-90	-
9. Symmetric Master Key/Key Derivation Key	About 1 year	-

 Cryptoperiod of <u>Session Key</u> → NIST recommends that the session key should be applied only once in every communication or should be <u>unique to each session</u> (NIST Special Publication 800-57 Part 3 Rev. 1)

NIST SP 800-57

A Novel Secure Root Key Updating Scheme Based on CTR_AES DRBG 128

Novel Secure Root Key Updating Scheme for LoRaWANs Based CTR_AES DRBG 128

- The involved Entities
 - 1. ED
 - 2. JS

Phases

- Scheme
 - Time-driven:
 Periodic Update

Section 2

- Phase-1: Initialization at ED
- Phase-2: Root Key update process at JS
- Communication Protocol
 - New_Join-request & New_Rejoin-request
 - New_Join-accept & New_Rejoin-accept
- Root Key Update Algorithm
 - CTR_AES DRBG 128 bit
 - Input: Key + Counter generated by RBG module complied to FIPS 140 standard
 - Output: New Root Key

Section 2

Phase 1: Initialization Process of *Root key Update*

End Device (ED)

Join Server (JS)

Phase-1: Initialization Process

1. Retrieve scheduled *ED*'s Timestamp, *Ts*

2. Retrieve counter's value ($0 \le 2^{16} - 1$)

If (*Count* = 0); *Count* = *DevNonce*

else $(0 < Count < 2^{16} - 1)$; Count = RJount1

3. Calculate MIC_{EJ} of New_Join-request or New_Rejoin-request message

if *Count* = *DevNonc*e

- cmac_j= aes128cmac(NwkKey, MHDR-ED | JoinEUI | DevEUI | DevNonce | Ts)

- $MIC_{EJj} = cmac_j[0..3]$

else

- JSIntKey = aes128_encrypt(NwkKey, 0x06 | DevEUI | pad16)

- $cmac_r = aes 128_cmac(JSIntKey, MHDR_{ED} | ReJoin Type1 | JoinEUI | DevEUI | RJcount1 | Ts)$

- $MIC_{EJr} = \operatorname{cmac}_r[0..3]$

4. Send the New_Join-request or New_Rejoin-Request message

- $New_Join-request = \{MHDR_{ED}, (JoinEUI, DevEUI, DevNonce, Ts), MIC_{EJ_j}\}$

- $New_Rejoin-request = \{MHDR_{ED}, (ReJoin Type1, JoinEUI, DevEUI, RJCount1, Ts), MIC_{EJr}\}$

{ $MHDR_{ED}$, (JoinEUI, DevEUI, DevNonce, Ts), MIC_{EJj} } or { $MHDR_{ED}$, (ReJoin Type1, JoinEUI, DevEUI, RJCount1, Ts), MIC_{EJr} }

Section 2

ersitas Onesia

Phase 2: Root key Update Process

• New_Root_Key=CTR_AES DRBG_128bits (Key, Nonce_Count|DevNonce)

<u>or</u>

• New_Root_Key=CTR_AES DRBG_128bits(Key, Nonce_Count|RJCount1)

Phase-2: Root K ev Undate Process based on CTR_AES DRBG 128	
1 Columbra the MIC are MIC	-4
T. Calculate the MIC_{EJj} of MIC_{EJr}	UNI
2. Retrieve $Ts'_{s'}JSs$ scheduled timestamp of the related ED, and check $Ts'-Ts_{s'} \leq \Pi Ts$	
- if the MIC calculation and ΔT_s is correct, then	Veritas, F
Store current NwkKev as NwkKev old;	
Store current JSIntKey as JSIntKey old;	
Retrieve a counter value from DevNonce or RJCount1	
Store the JSEncKey of the ED as JSEncKey old; JSEncKey = aes128_encrypt(NwkKey, 0x05 DevEUI pad16)
- if incorrect send notification to ED to retry the New_Join-request or New_Rejoin-request procedure.	,
3. Instruct Random Bit Generator to generate 2 value Pseudo Random Bit Sequence: 128 bits and 112 bits (Nonce_Con	unt)
4. Assign the input parameter	
- $Kev = 128$ Pseuda Random Rit Sequence	
- Counter = 112 bits Nonce_Count 16 bits value of DevNonce or RJCount1	
5.Calculate	
- New_Root_Key = CTR_AES DRBG 128(Key, Nonce_Count DevNonce) or	
- New_Root_Key = CTR_AES DRBG 128(Key, Nonce_Count RJCount1)	
6 Calculate Context and MIC	
- IContext = JoinFUU DevNonce MHDR of JoinNonce NetID Dev Addr DI Settings RyDelay CFL ist	
- RContext = JoinEUT RJCount1 MHDR _{JS} JoinNonce NetID DevAddr DLSettings ReDetay CFList	
To respond New Join-request:	
- cmac _i = aes128_cmac(JSIntKey_old, 0xFF] JContext New_Root_Key)	
- $MIC_{JEj} = cmac_j[03]$	
To respond New Rejoin-request:	
- cmac _r = aes128_cmac(JSIntKey_old, 0x01 RContext New_Root_Key)	
- $MIC_{JEr} = cmac_r[03]$	
7. Calculate JMessage and Encrypt the New Join-accept or New Rejoin-accept using AES 128 decrypt operation in E	CB mode
- JMessage = JoinNonce NetID DevAddr DLSettings RxDelay CFList	
- New_Join-accept = aes128_decrypt(NwkKey_old, JMessage New_Root_Key MIC_JEi)	
- New $Rejoin-accept = aes128$ $decrypt(JSEncKey_old, JMessage New_Root_Key MIC_{JEr})$	
8 Send the encry need New Jain-accent or New Rejain-accent	
or bend the cherry rearran bolh decept of new report decept	

 $\{ MHDR_{JS_{n}} aes 128_decrypt(NwkKey_old, JMessage | New_Root_Key | MIC_{JE_{j}} \} or \\ \{ MHDR_{JS_{n}} aes 128_decrypt(JSEncKey_old, JMessage | New_Root_Key | MIC_{JE_{r}}) \}$

LoRaWAN Rekeying Process

LoRaWAN Rekeying Process

- Reseed counter dijalankan setiap 2¹⁶ 1
- Internal state (block encrypt) : CTR_AES 128-bits
- Algorithm output: New_Root_Key

A Novel Session Key Update Scheme Based on Truncated Photon-256

Section 2.2

General Architecture: Session Key Update Scheme based on Truncated Photon-256 Proposed Approach

Time-driven: Periodic Update

- End Device (ED), Join Server (JS), Network ** Server (NS), Application Server (AS)
- The scheme consists of three stages
 - INIT_Stage occurs at ED 1.
 - *SKey_MatPrep* occurs at JS 2.
 - 3. *NSKey_Update & AS_KeyUpdate* occur at ED, NS. AS
- **Communication Protocol between ED-JS**
 - *New_Rejoin-request* *
 - New_ReJoin-response **
 - New_Rejoin-ack **

Communication Protocol between JS-NS & JS-AS

- *IN-SKeyMat & JA-SKeyMat*
- JN-accept & JA-accept **
- *IN-response* & *JA-response*

Communication Session between ED-JS, JS-NS & JS-AS Section 2.2

Truncated Photon-256 Algorithm of NSKey_Update & ASKey_Update

≻NSKey_Update

- FNwkSIntKey=Trunc_128 (Photon-256 (MPNet||0x01||Te||NetID||DevEUI));
- SNwkSIntKey=Trunc_128 (Photon- 256 (MPNet//0x03//Te//NetID//DevEUI));
- NwkSEncKey=Trunc_128 (Photon-256 (MPNet//0x04//Te//NetID//DevEUI));

>ASKey_Update

• *AppSKey=Trunc_128 (Photon-256 (MPApp||0x02||Te||AppID||DevEUI)).*

Research overview and Conclusions

Received January 22, 2022, accepted February 2, 2022, date of publication February 9, 2022, date of current version February 22, 2022. Digital Object Identifier 10.1009/ACCESS.2022.3150281

N. Hayati, K. Ramli, S. Windarta, M. Suryanegara, "A Novel Secure Root Key Updating Scheme for LoRaWANs Based on CTR_AES DRBG 128," IEEE Access, vol. 10, pp. 18807–18819, 2022,

Doi: 10.1109/ACCESS.2022.3150281.

A Novel Secure Root Key Updating Scheme for LoRaWANs Based on CTR_AES DRBG 128

NUR HAYATI[®], (Member, IEEE), KALAMULLAH RAMLI[®], (Member, IEEE), SUSILA WINDARTA[®], (Member, IEEE), AND MUHAMMAD SURYANEGARA[®], (Senior Member, IEEE)

Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, Jawa Barat 16424, Indonesia

Corresponding author: Kalamullah Ramli (kalamullah.ramli@ui.ac.id)

This work was supported by the Universitas Indonesia through the Hibah Publikasi Terindeks Internasional (PUTI) Kolaborasi Internasional (2Q2) Scheme under Contract NKB-788/UN2.RST/HKP.05.00/2020. The work of Nur Hayati was supported in part by the Beasiswa Unggulan Dosen Indonesia Dalam Negeri (BUDI-DN), in part by the Lembaga Pengelola Dana Pendidikan (LPDP), and in part by the Cooperation of the Ministry of Research and Higher Education and the Ministry of Finance of the Republic of Indonesia. N. Hayati, S. Windarta, M. Suryanegara, B. Pranggono and K. Ramli, "A Novel Session Key Update Scheme for LoRaWAN," in IEEE Access, vol. 10, pp. 89696-89713, 2022,

Doi: 10.1109/ACCESS.2022.3200397

IEEE Access

Received 2 July 2022, accepted 11 August 2022, date of publication 19 August 2022, date of current version 30 August 2022. Digital Object Identifier 10.109/ACCESS.2022.3200397

RESEARCH ARTICLE

A Novel Session Key Update Scheme for LoRaWAN

NUR HAYATI^{©1}, (Member, IEEE), SUSILA WINDARTA^{©1}, (Member, IEEE), MUHAMMAD SURYANEGARA^{©1}, (Senior Member, IEEE), BERNARDI PRANGGONO^{©2}, (Senior Member, IEEE), AND KALAMULLAH RAMLI^{©1}, (Member, IEEE)

¹Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia ²Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, U.K.

Corresponding author: Kalamullah Ramli (kalamullah ramli@ui.ac.id)

This research is partly supported by Universitas Indonesia through the Hibah Publikasi Terindeks Internasional (PUTI) Q1 Scheme under Contract NKB-509/UN2.RST/HKP.05.00/2022, of which Prof. Dr-Ing. Kalamullah Ramli is the corresponding author. Ms. Hayati is supported in her PhD study by Beasiswa Unggulan Dosen Indonesia Dalam Negeri (BUDI-DN), Lembaga Pengelola Dana Pendidikan (LPDP), cooperation of the Ministry of Research and Higher Education and the Ministry of Finance of the Republic of Indonesia.

THANK YOU

International Conference on ASEAN JAPAN Cybersecurity Community 2023